
ECE 763 HW2 Arpad Voros

1. Let z = zN × zN−1 . . . z1 =
∏N
n=1 zn. Please derive the formula for z

Given that
zt =

∑
(xi,yi)∈Dtrain

wt(xi) exp(−yiαtht(xi)) (1)

and

wt+1(xi) =
1

zt
wt(xi) exp(−yiαtht(xi)) (2)

then we have another solution for zt to equal

zt =
wt(xi)

wt+1(xi)
exp(−yiαtht(xi)), ∀(xi, yi) ∈ Dtrain (3)

meaning that

z =
N∏
n=1

zn =

N∏
n=1

wn(xi)

wn+1(xi)
exp(−yiαnhn(xi)), ∀(xi, yi) ∈ Dtrain (4)

which can be simplified down to

z =
w1(xi)

wN+1(xi)

N∏
n=1

exp(−yiαnhn(xi)), ∀(xi, yi) ∈ Dtrain (5)

we know that w is uniformly initialized as

w1(xi) =
1

N
, xi ∈ Dtrain (6)

so we can rewrite (5) and further simplify to get

z =
1

NwN+1(xi)
exp

(
−yi

N∑
n=1

αnhn(xi)

)
, ∀(xi, yi) ∈ Dtrain (7)

2. For Ht = sign
(∑N

n=1 αnhn(x)
)

, show that Err(Ht) ≤ z

We know that

Err(Ht) =
1

N

∑
(xi,yi)∈Dtrain

1Ht(xi)6=yi (8)

if we assume that every single classification is correct, then we have

Err(Ht) =
0

N
= 0 (9)

and if they are all incorrect, we have

Err(Ht) =
N

N
= 1 (10)

now we can take (7) and make the same assumptions. If we have a perfect classifier, then
we have

z =
1

NwN+1(x)
exp

(
−

N∑
n=1

αn

)
(11)

1



ECE 763 HW2 Arpad Voros

which is a non-zero positive integer greater than Err(Ht) in (9). And then we can assume
that we have the worst classifier (where Ht(xi) 6= yi∀(xi, yi) ∈ Dtrain)

z =
1

NwN+1(x)
exp

(
+

N∑
n=1

αn

)
(12)

which I am assuming will be greater than or equal to 1, so greater than or equal to
Err(Ht) in (10).

3. Show why αt = 1
2 log

[
1−εt(ht)
εt(ht)

]
in step 2 of the AdaBoost algorithm

The αt term is used to see how much each individual weak classifier influences the overall
strong classifier. We can go ahead and visualize how this value works by making some
observations of the function. First, we notice that if we have an error of exactly 0.5, our
αt value becomes

αt =
1

2
log

[
1− 0.5

0.5

]
=

1

2
log 1 = 0 (13)

This means that if we have a error in the middle (as εt ∈ (0, 1)), it will have no additional
influence on the overall classifier. We can make further observations by sweeping the error
value across this domain to see how it influences alphat. We can do something similar by
making a function of the error, εt(h)

αt = f(x = εt(h)) =
1

2
log

[
1− x
x

]
(14)

by taking the inverse, we find

εt(h) = f−1(y = αt) =
1

1 + exp (2y)
(15)

from here, we can take the limit of the αt values to understand its properties

lim
αt→∞

1

1 + exp (2αt)
= 0 (16)

and

lim
αt→−∞

1

1 + exp (2αt)
= 1 (17)

(16) tells us that a small error of 0 will result in a large positive value for αt, meaning it
will have more influence on the model. This makes sense, because we want more input
from a low-error classifier in the overall model. (17) tells us that a large error of 1 will
result in a large negative value for αt, meaning it will have less influence on the model.
This makes sense, because we want significantly less input from a high-error classifier in
the overall model.
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